Application of Support Vector Machine for Multi-Class Migraine Classification
Main Article Content
Abstract
Migraine is a prevalent, debilitating neurological disorder where accurate subtype classification is critical. Machine learning (ML) offers a promising avenue to enhance diagnostic accuracy. This study evaluates a Support Vector Machine (SVM) model for multi-class migraine classification. Utilizing a public Kaggle dataset, data was partitioned into 75% training and 25% testing sets. An SVM with a linear kernel was implemented to classify seven migraine subtypes. Performance was evaluated using overall accuracy, a confusion matrix, and detailed per-class metrics: Precision, Recall, and F1-Score. The model achieved 82.65% overall accuracy and a weighted-average F1-Score of 0.824. However, detailed metrics revealed significant variance. The model achieved perfect F1-Scores (1.000) for 'Migraine Without Aura' and 'Typical Aura without Migraine' but struggled with class confusion. 'Typical Aura With Migraine' exhibited a low Recall (0.533), and 'Basilar-Type Aura' had a poor F1-Score (0.400). Critically, the model completely failed to classify 'Sporadic Hemiplegic Migraine' (0.000 F1-Score), a failure masked by the high overall accuracy. These results suggest the linear SVM is a viable baseline, but its reliability varies drastically across subtypes. The granular F1-Score and Recall metrics are essential, exposing classification failures hidden by overall accuracy. Future work must address class imbalance and symptomatic overlap, likely via non-linear models, before this approach is clinically viable.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
How to Cite
References
[1] Dhiyaussalam, A., Wibowo, F. A., Nugroho, F. A., & Sarwoko, E. A. (2020). Classification of headache disorder using random forest algorithm. Proc. 2020 4th Int. Conf. Informatics Comput. Sci. (ICICoS), 1-6. https://doi.org/10.1109/ICICoS51170.2020.9299105.
[2] Das, S., & Hridy, R. I. (2025). Machine learning-based migraine prediction: Analyzing key features and cause-effect relationships for improved diagnosis and management. Int. J. Comput. Appl., 187(11), 1-10. https://doi.org/10.5120/ijca2025925039.
[3] Vandenbussche, N., Paemeleire, K., Van der Veen, S. S. S., & De Pauw, G. (2021). Natural language processing to classify migraine versus cluster headache. Neurology, 96(17), e2201-e2212. https://doi.org/10.1212/WNL.0000000000011818.
[4] Kwon, J. Y., et al. (2020). Machine learning-based automated classification of headache disorders using patient-reported questionnaires. Sci. Rep., 10(1), 1190. https://doi.org/10.1038/s41598-020-58079-4.
[5] Siddiquee, M. M. R., et al. (2023). Migraine and post-traumatic headache classification using an explainable 3D-ResNet-18 architecture. Sci. Rep., 13(1), 19169. https://doi.org/10.1038/s41598-023-46386-3.
[6] Gagnani, L., Barot, M., Chauhan, P., & Shah, M. (2025). Migraine classification using deep learning and machine learning techniques: A review. KSV E-J. Eng. Manag. Sci. Humanit., 2(1), 1-12.
[7] Li, G., Yang, H., He, L., & Zeng, G. (2025). Interpretable artificial intelligence analysis of functional magnetic resonance imaging for migraine classification: Quantitative study. JMIR Med. Inform., 13, e72155. https://doi.org/10.2196/72155.
[8] Fang, S., et al. (2025). Harnessing artificial intelligence for brain disease: advances in diagnosis, drug discovery, and closed-loop therapeutics. Front. Neurol., 16, 1615523. https://doi.org/10.3389/fneur.2025.1615523.
[9] Danelakis, A., et al. (2025). Diagnosing migraine from genome-wide genotype data: a machine learning analysis. Brain, 148(5), 1-14. https://doi.org/10.1093/brain/awaf172.
[10] Göker, H. (2022). Automatic detection of migraine disease from EEG signals using bidirectional long-short term memory deep learning model. Signal Image Video Process., 17(4), 1-9. https://doi.org/10.1007/s11760-022-02333-w.
[11] Williams, F., Gunawan, P., Limuel, & Purnajaya, A. R. (2023). Implementasi support vector machine dan radial basis function untuk klasifikasi makanan vegetarian menggunakan data image. JoDENS, 3(1), 5–8. https://doi.org/10.63643/jodens.v3i1.123.
[12] Purnajaya, A. R., & Hanggara, F. D. (2021). Perbandingan performa teknik sampling data untuk klasifikasi pasien terinfeksi covid-19 menggunakan rontgen dada. JAIC, 5(1), 37–42. https://doi.org/10.30871/jaic.v5i1.3010.
[13] Ferroni, P., Basili, S., Buccelletti, F. R. P., & Martelletti, P. (2020). Prediction of medication overuse in migraine patients: a machine learning approach. Cephalalgia, 40(1), 55-63. https://doi.org/10.1177/0333102419864077.
[14] Tu, Y., et al. (2020). An fMRI-based neural marker for migraine without aura. Neurology, 94(7), e741-e751. https://doi.org/10.1212/WNL.0000000000008962.
[15] Imtiaz, I., Afzal, H., Rehman, A. U., & Insany, G. P. (2025). Evaluating the role of machine learning in migraine detection and classification. Eng. Proc., 107(1), 122. https://doi.org/10.3390/engproc2025107122.
[16] Baccouch, C., & Bahar, C. (2025). Advanced machine learning approaches for accurate migraine prediction and classification. Int. J. Adv. Comput. Sci. Appl., 16(1), 1-12. https://doi.org/10.14569/IJACSA.2025.0160101.
[17] Petrušić, I., et al. (2024). Application of machine learning in migraine classification: a call for study design standardization and global collaboration. J Headache Pain, 25(1), 119. https://doi.org/10.1186/s10194-024-01889-x.
[18] Torrente, A., et al. (2024). The clinical relevance of artificial intelligence in migraine. Brain Sci., 14(1), 85. https://doi.org/10.3390/brainsci14010085.
[19] Mursyid, F., et al. (2025). “DETEKSI ACNE VULGARIS DAN JENIS KULIT PADA CITRA WAJAH BERBASIS YOLOV7 DAN RESNET50”, JUTEKOM, vol. 1, no. 3, pp. 120–130.