Facial Emotion Recognition Based on Convolutional Neural Network Using FER2013 Dataset

Main Article Content

Muhammad Al Faris Syabil
Lailan Sofinah Harahap
Muhammad Rafiq Nasution

Abstract

Facial emotion recognition is an important research area in computer vision and artificial intelligence, with applications in human–computer interaction, affective computing, and intelligent systems. This study aims to evaluate the performance of a Convolutional Neural Network (CNN) for facial emotion recognition using the FER2013 dataset. The FER2013 dataset consists of grayscale facial images with a resolution of 48×48 pixels and includes seven emotion classes: angry, disgust, fear, happy, neutral, sad, and surprise. Due to its low image resolution and imbalanced class distribution, FER2013 presents significant challenges for emotion classification tasks. An experimental research approach was employed by implementing a baseline CNN architecture composed of convolutional, pooling, and fully connected layers. Image normalization and batch-based data generation were applied during preprocessing. The model was trained using the Adam optimizer with categorical cross-entropy loss, and an early stopping mechanism was utilized to prevent overfitting. Model performance was evaluated using accuracy, precision, recall, F1-score, and confusion matrix analysis. The experimental results show that the proposed CNN model achieved an overall test accuracy of 55.50%. Emotions with distinctive facial features, such as happy and surprise, obtained higher F1-scores, while minority and visually subtle classes, particularly disgust and fear, exhibited lower performance. These findings indicate that a simple CNN architecture can provide reasonable performance on challenging facial emotion datasets while highlighting the impact of class imbalance and limited image resolution. The proposed model can serve as a baseline for further improvements in facial emotion recognition systems.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

Facial Emotion Recognition Based on Convolutional Neural Network Using FER2013 Dataset (M. A. F. Syabil, L. S. Harahap, & M. R. Nasution , Trans.). (2026). Jurnal Teknologi Informasi Dan Ilmu Komputer, 2(1), 39-46. https://doi.org/10.65258/jutekom.v2.i1.44

References

[1] C. Bialek, A. Matiolanski, and M. Grega, “An Efficient Approach to Face Emotion Recognition with Convolutional Neural Networks,” electronics, vol. 12, pp. 1–21, 2023, doi: https://doi.org/10.3390/electronics12122707.

[2] F. Hasan, S. Fatima, Z. Aziz, A. Naeem, N. Aslam, and M. Hasan, “Facial emotion recognition using deep learning and machine learning : a comparative study on ck + and fer2013,” Policy Res. J. ISSN, vol. 3, no. 8, pp. 482–496, 2025, doi: https://doi.org/10.5281/zenodo.16924510.

[3] A. Faizah, S. Imron, A. Rewur, and J. N. Makasunggal, “Komparasi Algoritma Support Vector Machine (SVM) dan Convolutional Neural Network (CNN) untuk Klasifikasi Ekspresi Wajah,” Inform. J. Ilmu Komput., vol. 21, no. 1, pp. 14–25, 2025, doi: https://doi.org/10.52958/iftk.v21i1.11091.

[4] S. Bahri, R. Samsinar, and P. S. Denta, “Pengenalan Ekspresi Wajah untuk Identifikasi Psikologis Pengguna dengan Neural Network dan Transformasi Ten Crops,” Resist. (Elektronika Kendali Telekomun. Tenaga List. Komputer), vol. 5, no. 1, pp. 15–20, 2022, doi: https://doi.org/10.24853/resistor.5.1.15-20.

[5] Fatimatuzzahra, Lindawati, and S. Soim, “Development of Convolutional Neural Network Models to Improve Facial Expression Recognition Accuracy,” J. Ilm. Tek. Elektro Komput. dan Inform., vol. 10, no. 2, pp. 279–289, 2024, doi: 10.26555/jiteki.v10i2.28863.

[6] T. Syaufina, R. Islamadina, P. T. Informasi, B. Aceh, and D. Wajah, “DEEP LEARNING UNTUK MENDETEKSI EMOSIONAL WAJAH MENGGUNAKAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK ( CNN ) DENGAN TENSORFLOW,” JIKI (JURNAL ILMU Komput. DAN Inform., vol. 5, no. 2, pp. 120–128, 2024, doi: https://doi.org/10.24127/jiki.v5i2.7440.

[7] F. Mursyid et al., “DETEKSI ACNE VULGARIS DAN JENIS KULIT PADA CITRA WAJAH BERBASIS YOLOV7 DAN RESNET50,” J. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 3, pp. 120–130, 2025, doi: 10.65258/jutekom.v1.i3.17.

[8] H. Gunawan, A. Chusyairi, and M. I. Saputra, “Penerapan K-Nearest Neighbor Dengan Metode Euclidean Distance Untuk Klasifikasi Tingkat Ketebalan Cat Di PT XYZ,” J. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 2, pp. 59–72, 2025, doi: 10.65258/jutekom.v1.i2.12.

[9] M. Nahdhudin, N. C. H. Wibowo, M. R. Handayani, and K. Umam, “Klasifikasi Sentimen Masyarakat Terhadap Aplikasi Tiktok Menggunakan Algoritma Naive Bayes,” J. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 3, pp. 107–112, 2025, doi: 10.65258/jutekom.v1.i3.13.

[10] K. I. K. Jajan and E. A. M. Abdulazeez, “Facial expression recognition based on deep learning: A review,” Indones. J. Comput. Sci., vol. 13, no. 1, 2024, doi: https://doi.org/10.33022/ijcs.v13i1.3705.

[11] A. A. H. Qutub and Y. Atay, “Deep learning approaches for classification of emotion recognition based on facial expressions,” Nexo Rev. Científica, vol. 36, no. 05, pp. 1–18, 2023, doi: https://doi.org/10.5377/nexo.v36i05.17181.

[12] D. Pruthviraja, U. M. Kumar, S. Parameswaran, V. G. Chowdary, and V. Bharadwaj, “Deep convolutional neural network architecture for facial emotion recognition,” PeerJ Comput. Sci., vol. 10, p. e2339, 2024, doi: https://doi.org/10.7717/peerj-cs.2339.

[13] J. A. Ballesteros, G. M. Ramírez V, F. Moreira, A. Solano, and C. A. Pelaez, “Facial emotion recognition through artificial intelligence,” Front. Comput. Sci., vol. 6, p. 1359471, 2024, doi: https://doi.org/10.3389/fcomp.2024.1359471.

[14] J. W. Kusno and A. Chowanda, “Modeling Emotion Recognition System from Facial Images Using Convolutional Neural Networks,” CommIT (Communication Inf. Technol. J., vol. 18, no. 2, pp. 251–259, 2024, doi: https://doi.org/10.21512/commit.v18i2.8873.

[15] I. Ekawati, F. N. R. Putra, M. Sumadyo, and R. N. Whidhiasih, “Deteksi Emosi Menggunakan Convolutional Neural Network Berdasarkan Ekspresi Wajah,” J. Students ‘Research Comput. Sci., vol. 5, no. 1, pp. 73–82, 2024, doi: https://doi.org/10.31599/h0kayy31.

[16] E. S. Agung, A. P. Rifai, and T. Wijayanto, “Image-based facial emotion recognition using convolutional neural network on emognition dataset,” Sci. Rep., vol. 14, no. 1, p. 14429, 2024, doi: https://doi.org/10.1038/s41598-024-65276-x.

[17] R. A. Elsheikh, M. A. Mohamed, A. M. Abou-Taleb, and M. M. Ata, “Improved facial emotion recognition model based on a novel deep convolutional structure,” Sci. Rep., vol. 14, no. 1, p. 29050, 2024, doi: https://doi.org/10.1038/s41598-024-79167-8.

[18] R. E. Donatus, I. H. Donatus, and U. O. Chiedu, “Exploring the impact of convolutional neural networks on facial emotion detection and recognition,” Asian J. Electr. Sci., vol. 13, no. 1, pp. 35–45, 2024, doi: https://doi.org/10.70112/ajes-2024.13.1.4241.

[19] E. Martyani and I. Yamalia, “Perbandingan Efektivitas Google Meet dan Zoom Berdasarkan Pengalaman Mahasiswa dalam Proses Pembelajaran Daring,” J. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 3, pp. 131–135, 2025, doi: 10.65258/jutekom.v1.i3.20.

[20] A. Janatu, W. Nandyu, Y. Servanda, and T. Sudinugraha, “ANALISIS DESAIN UI/UX WEBSITE SAMSAT KALIMANTAN TIMUR DENGAN METODE DESIGN THINKING,” J. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 1, pp. 1–6, 2026, doi: 10.65258/jutekom.v2.i1.36.